mangadex-home-rs/src/cache/fs.rs
2021-04-18 17:11:30 -04:00

209 lines
6.3 KiB
Rust

use actix_web::HttpResponse;
use bytes::BytesMut;
use futures::{Future, Stream, StreamExt};
use once_cell::sync::Lazy;
use std::path::{Path, PathBuf};
use std::pin::Pin;
use std::sync::atomic::{AtomicU8, Ordering};
use std::sync::Arc;
use std::task::{Context, Poll};
use std::time::Duration;
use std::{collections::HashMap, fmt::Display};
use tokio::fs::{remove_file, File};
use tokio::io::{AsyncRead, AsyncWriteExt, ReadBuf};
use tokio::sync::RwLock;
use tokio::time::Sleep;
use super::{BoxedImageStream, CacheStreamItem};
/// Keeps track of files that are currently being written to.
///
/// Why is this necessary? Consider the following situation:
///
/// Client A requests file `foo.png`. We construct a transparent file stream,
/// and now the file is being streamed into and from.
///
/// Client B requests the same file `foo.png`. A naive implementation would
/// attempt to either read directly the file as it sees the file existing. This
/// is problematic as the file could still be written to. If Client B catches
/// up to Client A's request, then Client B could receive a broken image, as it
/// thinks it's done reading the file.
///
/// We effectively use `WRITING_STATUS` as a status relay to ensure concurrent
/// reads to the file while it's being written to will wait for writing to be
/// completed.
static WRITING_STATUS: Lazy<RwLock<HashMap<PathBuf, Arc<CacheStatus>>>> =
Lazy::new(|| RwLock::new(HashMap::new()));
/// Tries to read from the file, returning a byte stream if it exists
pub async fn read_file(path: &Path) -> Option<Result<FsStream, std::io::Error>> {
if path.exists() {
let status = WRITING_STATUS
.read()
.await
.get(path)
.map_or_else(|| Arc::new(CacheStatus::done()), Arc::clone);
Some(FsStream::new(path, status).await)
} else {
None
}
}
/// Maps the input byte stream into one that writes to disk instead, returning
/// a stream that reads from disk instead.
pub async fn write_file(
path: &Path,
mut byte_stream: BoxedImageStream,
) -> Result<FsStream, std::io::Error> {
let done_writing_flag = Arc::new(CacheStatus::new());
let mut file = {
let mut write_lock = WRITING_STATUS.write().await;
let file = File::create(path).await?; // we need to make sure the file exists and is truncated.
write_lock.insert(path.to_path_buf(), Arc::clone(&done_writing_flag));
file
};
let write_flag = Arc::clone(&done_writing_flag);
// need owned variant because async lifetime
let path_buf = path.to_path_buf();
tokio::spawn(async move {
let path_buf = path_buf; // moves path buf into async
let mut errored = false;
while let Some(bytes) = byte_stream.next().await {
if let Ok(bytes) = bytes {
file.write_all(&bytes).await?
} else {
errored = true;
break;
}
}
if errored {
// It's ok if the deleting the file fails, since we truncate on
// create anyways, but it should be best effort
let _ = remove_file(&path_buf).await;
} else {
file.flush().await?;
file.sync_all().await?; // we need metadata
}
let mut write_lock = WRITING_STATUS.write().await;
// This needs to be written atomically with the write lock, else
// it's possible we have an inconsistent state
if errored {
write_flag.store(WritingStatus::Error);
} else {
write_flag.store(WritingStatus::Done);
}
write_lock.remove(&path_buf);
// We don't ever check this, so the return value doesn't matter
Ok::<_, std::io::Error>(())
});
Ok(FsStream::new(path, done_writing_flag).await?)
}
pub struct FsStream {
file: Pin<Box<File>>,
sleep: Pin<Box<Sleep>>,
is_file_done_writing: Arc<CacheStatus>,
}
impl FsStream {
async fn new(path: &Path, is_done: Arc<CacheStatus>) -> Result<Self, std::io::Error> {
Ok(Self {
file: Box::pin(File::open(path).await?),
// 0.5ms
sleep: Box::pin(tokio::time::sleep(Duration::from_micros(500))),
is_file_done_writing: is_done,
})
}
}
/// Represents some upstream error.
#[derive(Debug)]
pub struct UpstreamError;
impl std::error::Error for UpstreamError {}
impl Display for UpstreamError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "An upstream error occurred")
}
}
impl Stream for FsStream {
type Item = CacheStreamItem;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let status = self.is_file_done_writing.load();
let mut bytes = BytesMut::with_capacity(1460);
let mut buffer = ReadBuf::new(&mut bytes);
let polled_result = self.file.as_mut().poll_read(cx, &mut buffer);
match (status, buffer.filled().len()) {
// Prematurely reached EOF, schedule a poll in the future
(WritingStatus::NotDone, 0) => {
let _ = self.sleep.as_mut().poll(cx);
Poll::Pending
}
// We got an error, abort the read.
(WritingStatus::Error, _) => Poll::Ready(Some(Err(UpstreamError))),
_ => polled_result.map(|_| Some(Ok(bytes.split().into()))),
}
}
}
impl From<UpstreamError> for actix_web::Error {
#[inline]
fn from(_: UpstreamError) -> Self {
HttpResponse::BadGateway().finish().into()
}
}
struct CacheStatus(AtomicU8);
impl CacheStatus {
#[inline]
const fn new() -> Self {
Self(AtomicU8::new(WritingStatus::NotDone as u8))
}
#[inline]
const fn done() -> Self {
Self(AtomicU8::new(WritingStatus::Done as u8))
}
#[inline]
fn store(&self, status: WritingStatus) {
self.0.store(status as u8, Ordering::Release);
}
#[inline]
fn load(&self) -> WritingStatus {
self.0.load(Ordering::Acquire).into()
}
}
enum WritingStatus {
NotDone = 0,
Done,
Error,
}
impl From<u8> for WritingStatus {
#[inline]
fn from(v: u8) -> Self {
match v {
0 => Self::NotDone,
1 => Self::Done,
2 => Self::Error,
_ => unreachable!(),
}
}
}