omegaupload/common/src/crypto.rs

337 lines
10 KiB
Rust

// Copyright (c) 2021 Edward Shen
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
use std::ops::{Deref, DerefMut};
use argon2::{Argon2, ParamsBuilder};
use chacha20poly1305::aead::generic_array::sequence::GenericSequence;
use chacha20poly1305::aead::generic_array::GenericArray;
use chacha20poly1305::aead::{AeadInPlace, NewAead};
use chacha20poly1305::XChaCha20Poly1305;
use chacha20poly1305::XNonce;
use rand::{CryptoRng, Rng};
use secrecy::{DebugSecret, ExposeSecret, Secret, SecretVec, Zeroize};
use typenum::Unsigned;
#[derive(Debug, thiserror::Error)]
pub enum Error {
#[error("Invalid password.")]
Password,
#[error("Invalid secret key.")]
SecretKey,
#[error("An error occurred while trying to decrypt the blob.")]
Encryption,
#[error("An error occurred while trying to derive a secret key.")]
Kdf,
}
// This struct intentionally prevents implement Clone or Copy
#[derive(Default, PartialEq, Eq)]
pub struct Key(chacha20poly1305::Key);
impl Key {
/// Encloses a secret key in a secret `Key` struct.
pub fn new_secret(vec: Vec<u8>) -> Option<Secret<Self>> {
chacha20poly1305::Key::from_exact_iter(vec.into_iter())
.map(Self)
.map(Secret::new)
}
}
impl DebugSecret for Key {}
impl AsRef<chacha20poly1305::Key> for Key {
fn as_ref(&self) -> &chacha20poly1305::Key {
&self.0
}
}
impl Deref for Key {
type Target = chacha20poly1305::Key;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for Key {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl Zeroize for Key {
fn zeroize(&mut self) {
self.0.zeroize();
}
}
/// Seals the provided message with an optional password, returning the secret
/// key used to encrypt the message and mutating the buffer to contain necessary
/// metadata.
///
/// The resulting sealed message has the nonce used to encrypt the message
/// appended to it as well as a salt string used to derive the key. In other
/// words, the modified buffer is one of the following to possibilities,
/// depending if there was a password provided:
///
/// ```text
/// modified = C(message, rng_key, nonce) || nonce
/// ```
/// or
/// ```text
/// modified = C(C(message, rng_key, nonce), kdf(pw, salt), nonce + 1) || nonce || salt
/// ```
///
/// Where:
/// - `C(message, key, nonce)` represents encrypting a provided message with
/// `XChaCha20Poly1305`.
/// - `rng_key` represents a randomly generated key.
/// - `kdf(pw, salt)` represents a key derived from Argon2.
/// - `nonce` represents a randomly generated nonce.
///
/// Note that the lengths for the nonce, key, and salt follow recommended
/// values. As of writing this doc (2021-10-31), the nonce size is 24 bytes, the
/// salt size is 16 bytes, and the key size is 32 bytes.
///
/// # Errors
///
/// This message will return an error if and only if there was a problem
/// encrypting the message or deriving a secret key from the password, if one
/// was provided.
pub fn seal_in_place(
message: &mut Vec<u8>,
pw: Option<SecretVec<u8>>,
) -> Result<Secret<Key>, Error> {
let (key, nonce) = gen_key_nonce();
let cipher = XChaCha20Poly1305::new(key.expose_secret());
cipher
.encrypt_in_place(&nonce, &[], message)
.map_err(|_| Error::Encryption)?;
let mut maybe_salt_string = None;
if let Some(password) = pw {
let (key, salt_string) = kdf(&password).map_err(|_| Error::Kdf)?;
maybe_salt_string = Some(salt_string);
let cipher = XChaCha20Poly1305::new(key.expose_secret());
cipher
.encrypt_in_place(&nonce.increment(), &[], message)
.map_err(|_| Error::Encryption)?;
}
message.extend_from_slice(nonce.as_slice());
if let Some(maybe_salted_string) = maybe_salt_string {
message.extend_from_slice(maybe_salted_string.as_ref());
}
Ok(key)
}
/// Opens a message that has been sealed with `seal_in_place`.
///
/// # Errors
///
/// Returns an error if there was a decryption failure or if there was a problem
/// deriving a secret key from the password.
pub fn open_in_place(
data: &mut Vec<u8>,
key: &Secret<Key>,
password: Option<SecretVec<u8>>,
) -> Result<(), Error> {
let pw_key = if let Some(password) = password {
let salt_buf = data.split_off(data.len() - Salt::SIZE);
let argon = get_argon2();
let mut pw_key = Key::default();
argon
.hash_password_into(password.expose_secret(), &salt_buf, &mut pw_key)
.map_err(|_| Error::Kdf)?;
Some(Secret::new(pw_key))
} else {
None
};
let nonce = Nonce::from_slice(&data.split_off(data.len() - Nonce::SIZE));
// At this point we should have a buffer that's only the ciphertext.
if let Some(key) = pw_key {
let cipher = XChaCha20Poly1305::new(key.expose_secret());
cipher
.decrypt_in_place(&nonce.increment(), &[], data)
.map_err(|_| Error::Password)?;
}
let cipher = XChaCha20Poly1305::new(key.expose_secret());
cipher
.decrypt_in_place(&nonce, &[], data)
.map_err(|_| Error::SecretKey)?;
Ok(())
}
#[must_use]
fn gen_key_nonce() -> (Secret<Key>, Nonce) {
let mut rng = get_csrng();
let mut key = GenericArray::default();
rng.fill(key.as_mut_slice());
let mut nonce = Nonce::default();
rng.fill(nonce.as_mut_slice());
(Secret::new(Key(key)), nonce)
}
// Type alias; to ensure that we're consistent on what the inner impl is.
type NonceImpl = XNonce;
#[derive(Clone, Copy, PartialEq, Eq, Debug, Default)]
struct Nonce(NonceImpl);
impl Deref for Nonce {
type Target = NonceImpl;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for Nonce {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl AsRef<[u8]> for Nonce {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl Nonce {
const SIZE: usize = <NonceImpl as GenericSequence<_>>::Length::USIZE;
#[must_use]
pub fn increment(&self) -> Self {
let mut inner = self.0;
inner.as_mut_slice()[0] += 1;
Self(inner)
}
#[must_use]
pub fn from_slice(slice: &[u8]) -> Self {
Self(*NonceImpl::from_slice(slice))
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
struct Salt([u8; Self::SIZE]);
impl Salt {
const SIZE: usize = argon2::password_hash::Salt::RECOMMENDED_LENGTH;
fn random() -> Self {
let mut salt = [0_u8; Self::SIZE];
get_csrng().fill(&mut salt);
Self(salt)
}
}
impl AsRef<[u8]> for Salt {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
/// Hashes an input to output a usable key.
fn kdf(password: &SecretVec<u8>) -> Result<(Secret<Key>, Salt), argon2::Error> {
let salt = Salt::random();
let hasher = get_argon2();
let mut key = Key::default();
hasher.hash_password_into(password.expose_secret().as_ref(), salt.as_ref(), &mut key)?;
Ok((Secret::new(key), salt))
}
/// Returns Argon2id configured as follows:
/// - 15MiB of memory (`m`),
/// - an iteration count of 2 (`t`),
/// - and 2 degrees of parallelism (`p`).
///
/// This follows the [minimum recommended parameters suggested by OWASP][rec].
///
/// [rec]: https://link.eddie.sh/vaQ6a.
fn get_argon2() -> Argon2<'static> {
let mut params = ParamsBuilder::new();
params
.m_cost(15 * 1024) // 15 MiB
.expect("Hard coded params to work")
.t_cost(2)
.expect("Hard coded params to work")
.p_cost(2)
.expect("Hard coded params to work");
let params = params.params().expect("Hard coded params to work");
Argon2::new(argon2::Algorithm::Argon2id, argon2::Version::V0x13, params)
}
/// Fetches a cryptographically secure random number generator. This indirection
/// is used for better auditing the quality of rng. Notably, this function
/// returns a `Rng` with the `CryptoRng` marker trait, preventing
/// non-cryptographically secure RNGs from being used.
#[must_use]
pub fn get_csrng() -> impl CryptoRng + Rng {
rand::thread_rng()
}
#[cfg(test)]
mod test {
use super::open_in_place;
use super::seal_in_place;
use crate::crypto::SecretVec;
macro_rules! test_encryption {
($($name:ident, $content:expr, $password:expr),*) => {
$(
#[test]
fn $name() {
let mut m = $content;
let n: Vec<u8> = $content;
let key = seal_in_place(&mut m, $password).unwrap();
assert_ne!(m, n);
assert!(open_in_place(&mut m, &key, $password).is_ok());
assert_eq!(m, n);
}
)*
};
}
test_encryption!(empty, vec![], None);
test_encryption!(
empty_password,
vec![],
Some(SecretVec::from(b"password".to_vec()))
);
test_encryption!(
normal,
vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
None
);
test_encryption!(
normal_password,
vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
Some(SecretVec::from(b"password".to_vec()))
);
}